
January 1990 $2.50
Volume 2, Number 4

Technical UNIXVser Group

newsletter of the

Technical UNIX®
User Group
This month...

The President's Corner
Solving Those Puzzling Quirks of UNIX Systems Use
A UNIX Christmas Song
January's Agenda

" Late Breaking News... ^
Next Meeting to be held at the

wuvmsYPf oj MwHnoBR
See ANNOUNCEMENT for details

UNIX is a registered trademark of AT&T.

Thoughts From The Editor
By Susan Zuk

Happy New Year!!! Hope the holidays passed joyously and
you are all ready for a new year and decade.

This is the month which Uniforum is holding its annual UNIX
Show. It is being held in Washington, D.C. from January 23-
25. The theme this year is "UNIX in the 90's - Decade of the
User". Uniforum 1990 is offering 20 all-day tutorials, 36
marketing and industry-oriented conference sessions, eight
technical presentations, daily keynote addresses, and 16 free
UNIX system workshops. More than 250 major UNIX system
vendors will be displaying and demonstrating their newest
products and services. If anyone is interested in more infor­
mation you can call me. If anyone is attending, let us know so
you can tell us all about it!

This month's newsletter includes a Christmas jingle comple­
ments of a special Joke network. Just remember, Ukrainian
Christmas is the first weekend in January so this article is right
on time!

For those of you confused by crontabs, we have found an
interesting article which discusses a way of automating the
scheduling of tasks. A shell script lets the user fill-in various
time, date and command queries instead of having the user
know what information to put in a specific file. It also allows
any user to create their own crontab commands without
leaving the directory in which they are located. Don't they call
that being "user-friendly"? Give the programs a try and tell us
how you like them.

Now is about the time to complete my editorial and allow you
to continue reading. Enjoy yourself and I'll see you next week
at the meeting. Remember the location has changed to the
UNIVERSITY of MANITOBA, Main Floor, Senate Cham­
bers, Engineering Building.

Bye for Now!!!

Group Information

The Technical Unix User Group meets at 7:30 pm the second
Tuesday of every month, except July and August. The news­
letter is mailed to all paid up members 1 week prior to the
meeting. Membership dues are $20 annually and are due at the
October meeting. Membership dues are accepted by mail and
dues for new members will be pro-rated accordingly.

The Executive

Copyright Policy and Disclaimer

This newsletter is ©opyrighted by the Technical UNIX User
Group. Articles may be reprinted without permission as long
as the original author and the Technical UNIX User Group are
given credit

The Technical UNIX User Group, the editor, and contributors
of this newsletter do not assume any liability for any damages
that may occur as a result of information published in this
newsletter.

President:
Vice President:
Treasurer/Membership:
Secretary:
Newsletter Editor:
Information:

Gilbert Detillieux 261 -9146
Derek Hay 943-5401
Gilles Detillieux 261-9146
MattBinnie (W) 949-0190
Susan Zuk (W) 788-7312
Gilbert Detillieux 261 -9146

(or) Susan Zuk (W) 788-7312

Technical UNIX User Group

P.O. Box 130
Saint-Boniface, Manitoba

R2H 3B4

t = \

ANNOUNCEMENT...
Meeting Location:

The January meeting location will be provided by
The University of Manitoba, Senate Chambers,
Main Floor Engineering Building (Fort Garry Cam­
pus), South of University Centre.

\ = j

President's Corner
by Gilbert Detillieux, President

Well, here we find ourselves not only starting a new year, but
a new decade. The 1980's have certainly seen some interest­
ing changes in the uses and popularity of UNIX.

As the decade began, I got my first exposure to UNIX, on a
PDP-11/45 running Version 6 (the version before the first
portable UNIX, Version 7, which started the whole "move­
ment* '). At that time, UNIX was well known and well liked
in most universities, but virtually unheard of in the business
world.

By the middle of the decade, UNIX was starting to catch on
in business, and opportunities looked really promising for
those with UNIX expertise. Our company, INFO WEST, in­
corporated at that time, and we decided that this expertise
would be our edge, but unfortunately, in Winnipeg most
business and MIS people were still asking' 'What's UNIX?"

As the decade draws to a close, UNIX looks healthier than
ever, and is well known enough to be getting coverage in
newspapers and business magazines. Where UNIX is headed
in the next decade is not completely clear, but it is certainly
headed up! I expect that by the mid-90's, what isn't UNIX
will either be UNIX-derived (Mach, AK, and others to
follow) or UNIX-inspired (many companies are talking about
adding POSK compatibility to their non-UNIX systems).
Thus the 1990's should be an interesting decade for UNIX
watchers.

With that in mind, our local industry psychic, Jean U. Nixen,
has come out of a coma again just long enough to make some
predictions for the decade ahead. Here we go again...

1991: DEC'swishthattheOSFandUNIXInternationalwill
* 'get married soon" is realized; unfortunately, a divorce soon
ensues.

1993: IBM's success with its new line of RISC processors
prompts it to devise new industry-specific RISC architec­
tures. The Financial Instruction Set Computer And Logic
(FISCAL) architecture is introduced, with built-in FIFO and
LIFO storage, Internal Register Store (IRS), Global Instruc­
tion Cache (GIC), and Register-Register Storage Processor
(RRSP). Revenue Canada decides against FISCAL technol­

ogy because Global System Traps (GST's) are not imple­
mented.

1995: "OS/Who?"

1996: NeXT Inc. decides to stop providing discounts to
academic institutions. Infuriated by that move, Steve Jobs
resigns and goes on to form LaST Computer Technologies.

1999: LaST introduces it's revolutionary new system for the
2000's, which features optical computing logic, 1000 MIPS,
1500 MFLOPS,4500 KLIPS (1000's of Logical Inferences Per
Second), 2TB (Tera-Bytes) optical main memory, and 200TB
removable optical storage. IBM buys them out; Steve Jobs re­
signs.

2000: The financial world grinds to a halt, as a quarter
century's worth of computer software fails to calculate the
correct date.

Now, back to the present, and some more serious matters.

Our current membership secretary, Pat Macdonald, regretfully
informed us that he would be resigning his position. On behalf
of all the membership, I would like to thankPat for having done
a great job for the past year; I would also like to thank our
treasurer, Gilles Detillieux, for assuming the responsibilities of
membership secretary for the remainder of the year.

Pat will remain a member, however, and has agreed to do a
presentation for the next meeting. Thus, our January meeting
will not be at the usual location, but at the University of Mani­
toba; specifically, the Senate Chambers, Main Floor, Engi­
neering Building (just south of University Centre), Fort Garry
Campus. This meeting will be January 9, at 7:30PM, and will
follow our usual format: round table discussion, business
meeting, then presented topic. The presented topic will deal
with sockets and IPC for TCP/IP networks - it will be quite
technical, but should be very useful for any programmers out
there interested in networks.

I hope to see you all at the meeting. I wish you all success for
the new year and the new decade!

3

Solving Those Puzzling Quirks of UNIX Systems Use

By Steven List and Bruce Stewart
Reprinted from lusrl group CommUNIXations September/October 1987

The UNIX operating system provides two facilities for sched­
uling activities such as performing system backups, preparing
reports or building software. Both scheduling facilities use the
cron mechanism. Theaf facility schedules a single occurence
of any activity. For example, you can specify that you want to
create a report beginning "at 10PM tonight" or "at noon on
Thursday" or even "now". The system will perform the request
once, at the specified time. The crontab facility schedules the
regular occurence of an activity. Activities may be scheduled
once a year (using a specific date), once a minute or for any
interval between. Although both mechanisms keep track of
scheduled activities, crontab is more appropriate for schedul­
ing the same activity repeatedly, whereas at is the method of
choice for scheduling a single occurence of an activity. The at
facility is also appropriate for scheduling activities that occur
regularly, but change significantly between executions.

But How?

This column discusses using crontab and cron to schedule
activities. We will examine a shell script that uses crontab to
schedule a regular activity. The script is suitable for non­
technical users or for those with no experience with cron and
crontab, as well as those users who just want a more conven­
ient method of using the resident UNIX scheduling facilities.
We will also briefly discuss the role that the system adminis­
trator must play in setting up and monitoring the crontab
mechanism.

The Prerequisites?

Several files are required in order to use the at and crontab
scheduling facilities. All are found in the directory lusrllibl
cron. Typically, these files restrict or allow access to the at
and crontab schedulers, and are controlled by the system ad­
ministrator. Each file is listed and described in Figure 1.

Using Crontab

The crontab facility relies on a series of crontab files to sched­
ule activities. A crontab file consists of one or more com­
mands to be executed and the scheduling information for each
command. Each user authorized to use the crontab facility
has a crontab file in the /usr/lib/cron/crontab directory. En­
tries in the crontab file follow a special format, andreaders are
referred to the crontab and cron manual pages for a discussion
of the fields in each crontab entry. The shell script examined
here prompts the user for the values to be entered in each field,
validates the input and creates a new entry in the crontab file.

Figure 3 contains the main logic of the shell program. The
eval command is used to create a menu in which each choice
corresponds to a field in a crontab entry. The user is prompted
to select a field to be modified. For each field selected, the
value to be placed in the field is edited by the valnum shell
function (Figure 2). The function actually begins the shell
script because shell functions must be defined before being

Figure 1 - Essential Files

at.allow This file is a list of users permitted to use the at facility. Note that if there is no atallow file and no
at.deny file, only the superuser is allowed to use at. Also note that if there is only an at.deny file (see
below), the manual indicates that anyone not listed in that file may use at. The implication is that if there
is an empty at.deny file, anyone may use at

at.deny This file is a list of users who are not allowed to use the at facility. As indicated above, this file may be
used to provide global access.

cron.allow Similar to at.allow, this file is a list of users permitted to use the cron facility.
cron.deny Similar to atdeny, this file denies specified users the use of the cron facility. This file or the cron.allow

file, should generally be set up as there is more danger in allowing users to schedule regular events than
specific events, although not too much.

.proto This file is required and contains a prototype header file for at jobs.

4

used. If the selection is to update the crontab entry, the entered
values are appended to a file in the /usrlspool/cron/crontabs
directory. The crontab command is then invoked with this file
as input to create a new crontab entry.

Still referring to Figure 3, the true and false commands are
used to control the while loops. Both of these commands are
shell scripts and live in /bin. true is a shell script with no
commands and a default exit status of zero. It does nothing
successfully, false is a shell script with an explicit exit status
of 255. It does nothing unsuccessfully. Both commands are
useful for controlling loops designed to repeat indefinitely.

The && list separator is also used to assign the value from
false to the shell variable FAILED. The statement that
executes the valnum function includes the construction
"&&FAILED=false". The && list separator informs the shell
to execute the statement following the && only if the state­
ment preceding the separator succeeds. In this example, if the
valnum function returns zero (success), the variable FAILED
is set to false and the loop terminates.

One important note about the use ofcron, which is also clearly
documented in the manual page, is worthy of additional
comment here. All output (both standard output and standard
error) from commands executed by cron are mailed to the user.
If the user wishes to have something else happen, then either
or both of these outputs must be explicitly handled. Also, even
if there is no output, the cron facility will create an entry in the
user's mail file reflecting the time at which the entry was
executed unless the user redirects the output

Another interesting point is found in the capability to redirect
standard input into a user's commands in cron. This can
provide very powerful means of executing commands that are
normally interactive in a batch environment..

Steven List is a senior technical staff member of Benetics Corp.
Bruce Stewart is an independent software consultant experi­
enced in program development, systems administration and
system design.

Finally, IFS (internal field separator) is used to parse the
expressions passed to the valnum function. The existing IFS
is first saved and then set to"-,". Whether the string passed to
valnum is a range (elements separated by a dash) or a list
(elements separated by a comma), the expression can be
validated against the minimum and maximum values allow­
able for the appropriate field. IFS is then restored to its
previous value.

Suggestions and Improvements

This script is only a beginning. Although it helps users create
a crontab file, it cannot be used to edit an existing crontab file.
Output from the script is always appended to a crontab file; no
provisions is made to change an entry once it has been written.
It also doesn't offer the user a graceful way to exit the script.
Once invoked, the script assumes that a user will eventually
want to write a crontab file. And although the help files give
some guidance for completing the scheduling information in
the crontab entry, the contents of the command field are
necessarily left to the user. Improvements in these areas
would make the script both friendlier and more useful.

Quirks and Points of Interest

Our discussion of UNIX scheduling would not be complete
without a brief mention of the batch command. As discussed
in the manual page for at, the batch command is similar to "at
now," but not identical. The batch command is actually a shell
script living in /usr/bin; it does no more than invoke at -qb.
The lf-qbM argument to at specifies the queue to be used for the
submitted job. Presumably, the undocumented flag "-q"
indicates that the letter following refers to the queue in which
the submitted job is to be placed for execution.

Figure 2: Function valnum - validate numeric field
contents

function valnum accepts a string that may be com-
posed of digits, commas, or dashes, since cron
does not allow both ranges (a-z) and lists (a,bfc)
in the same field, this function will handle the
exclusion.

usage: valnum fieldtype value

MIN=1 HR=2 DOM=3 MOY=4 DOW=5

valnum ()

fieldtype=$1
fieldval=$2
case $fieldtype in

$MIN) min=0 max=59 type=Minute;;
$HR) min=0 max=23 type=Hour;;
$DOM) min=1 max=31 type=MDay of Month";;
$MOY) min=1 max=6 type=Month;;
$DOW) min=0 max=6 type="Day of Week";;

esac
shift
daslWexpr "$fieldvar : *n

comma=*expr "$fieldval": *,%

if [-n "$dash" -a -n "$comma"]
then

echo "You cannot have both a range and a list:"
echo $f ieldval
ret=1

else
OLDIFS="$IFS" IFS=V
set $fieldval
IFS="$OLDIFS"
ret=0
for i in $*; do if {$i -It $min -o $i -gt $max]; then

echo "Invalid value for $type: $i"
ret=1

fi
done

fi
return $ret

j :

Figure 3: The MKCRON Shell Script

mkcron - create a crontab entry

usage: mkcron

MIN=0
HR=2 DOM=3 MOY=4 DOW=5 CMD=6 UpdCron=7
Max=8

I #

eval Menu_$MIN=VMinute\"
eval Menu_$HR=\HHour\"
eval Menu_$DOM=VDay of MonthV
eval Menu__$MOY=\HMonth\"
eval Menu_$DOW=\"Day of WeekV
eval Menu_$CMD=\"Command to Executed
eval Menu_$UpdCron=\"Update CRONTAB with this entryV

Minutes='*' Hours='*' DaysOfMonth='*' DaysOfWeek='*' Months='*'
Command=/bin/date

Continue=true

while $Continue
do

Select=0

while [$Select -eq 0]
do

echo "\n\tPlease select which field you would like to enter\n"
for i in $MIN $HR $DOM $MOY $DOW $CMD $UpdCron
do

eval echo "\\\t$i: \$Menu_$i"
done
echo "\n\tPlease enter the number of your choice: _\b\c"
read Select
if ["$Select" -le $Min -o H$Select" -ge $MAX]
then

echo "\n--> This is not a valid choice [$Select]\nH

Select=0
fi

done # while Iselect

process the specific field requested by the user

if [$Select -eq $CMD]
then

eval echo "\WtPlease enter the value for the \$Menu_$Select field:H

read Command
elif [$Select -eq $UpdCron]
then

if [-r /usr/spool/cron/crontabs/$LOGNAME]
I then

cp /usr/spool/cron/crontabs/$LOGNAME ct.$LOGNAME
else

touch ct.$LOGNAME
fi

6

file:///n/tPlease
file:///n/tPlease
file:///WtPlease

chmod 666 ct.SLOGNAME
echo "$Minutes $Hours $DaysofMonth $Months $DaysOfWeek $Command"» ct.$LOGNAME
crontab ct.$LOGNAME
rm -f ct.$LOGNAME
echo "\tYour crontab thus far contains the following:\n"
crontab -I
Continue=false
continue

else
FAILED=true
while $FAILED
do

eval echo "WMPIease enter the value for the \$Menu_$Select field: \\\c"
read Value
if ["$ValueH ='?'] # a cry for help
then

echo""
eval more Help.$Select
echo""

else
valnum $Select "$Value" && FAILED=false

fi
done
case $Select in

$MIN) Minutes="$Value";;
$HR) Hours=M$Value";;
$DOM) DaysOfMonth=H$ValueH;;
$MOY) Months=M$Value";;
$DOW) DaysOfWeek="$Value";;

esac
fi
echo "\tEntry so far:\n\t\c"
echo "$Minutes $Hours $DaysofMonth $Months $DaysOfWeek $Command"

done # while continue
exitO

The UNIX Christmas Song

Better watchout
Better !cry
Better !pout

Lpr why
Santaclaus < Northpole > Town

Cat /etc/password > list
Ncheck list
Ncheck list

Grep list naughty > nogiftlist
Grep list nice > giftlist

Santaclaus < Northpole > Town

Who I grep sleeping
Who I grep awake

Who Igrep bad/good
For (goodness sake) {be good}

7

file:///tYour
file:///tEntry

Technical UNIX*User Croup Agenda
for

Tuesday, January 9,1990
7:30pm

The University of Manitoba
Fort Garry Campus

Senate Chambers
Main Floor, Engineering Building

South of University Centre

1. Round Table 7

2. Business Meeting 8
a) Membership Secretary's Report
b) Newsletter Report
c) Treasurer's Report

4. Break 8

5. Presented Topic 8
•TePTB* - Pat Macdonald

' V ' - • • ' _ * * 7 v < > ^ *>*»» •

6. Adjourn 9

8

